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1. Introduction 

Most of the frequency selective surface (FSS) is made of dielectric substrates and 
conducting patches that are periodically located on top of the substrates. Because of the many 
important applications in microwave and optical engineering, it has attracted the attention of 
investigators, and many methods have been developed to analyze different types of FSS structures 
[1-3]. For periodic FSS geometries of flat and infinite extent, the most effective method is the 
conventional method of moments based on Floquet’s theorem. However, this method does not 
apply when the FSS structures are of finite extent, or of finite radius of curvature. In this case, 
full-wave numerical methods must be employed to determine the scattering and radiation 
characteristics. Though, the flat-surface FSS is relatively easier to analyze and design, its 
application is limited. For example, if one wants to filter out unwanted microwave penetration of 
radome to the antenna compartment in an aircraft, then it is desirable to put FSS on the radome. In 
this case, the FSS has to be curved with finite extent. 

In this paper, we apply the hybrid volume-surface integral equation (VSIE) approach for 
the analysis of finite and curved FSS structures. The VSIE technique has previously been applied 
for analysis of the scattering by composite metallic and material targets and input impedance of 
the printed structures with finite ground plane [4-6]. Compared with other simulation approaches, 
the VSIE approach presents a number of advantages. For example, it gives flexibility to model 
structures of real size and of non-flat, arbitrarily shaped conducting structures or dielectrics. 
Because this method is based on the method of moment solution of the hybrid integral equation, it 
has high solution accuracy. Moreover, in the VSIE approach, the only Green’s function used in 
the integral operators is the free-space dyadic Green’s function, hence, the multilevel fast 
multipole algorithm (MLFMA) can be easily applied to reduce the computational complexity so 
that FSS structures of large size and arbitrary shape can be simulated by this method. 
 
2. Description of the VSIE Approach  
 For a finite extend but flat FSS structure, the most effective method is to use the CG-FFT 
method in which, the fast Fourier transform is applied to speed up the matrix-vector multiplication 
in the conjugate gradient iterations. Theoretically, this approach can still be applied if the 
structure is curved. In this case, the grid points are no longer on the structured grid and pre-
corrections are needed to project the physical grid points to the structured grid points so that the 
FFT can be used. However, one should note that the efficiency of this method is reduced due to 
the inclusion of extra grid points. The smaller the curvature of the FSS, the more reduction in 
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computation efficiency for the CGFFT. The VSIE algorithm, on the other hand, does not have this 
limitation. In fact, it does not introduce extra grid points to model the curved structures. Instead, it 
assigns basis functions on the surface and the dielectric volume only. The basic idea of this 
approach is to use the surface equivalent theorem and volume equivalent principle to replace the 
surfaces with surface currents, and the dielectric volume with the volume current [4-6]. Together, 
the two currents satisfy two simultaneous integral equations: the surface integral equation and the 
volume integral equation. The two equations are solved simultaneously by the method of 
moments. To solve the integral equation numerically, the conducting surfaces (ground plane and 
printed structures are modeled by quadrilateral surface mesh, and the dielectric substrates by the 
volume hexahedron mesh. Because of the quadrilateral patch, this method can even be applied to 
model the printed patches that are of arbitrary shape such as circular discs and rings. 
 Consider a FSS structure in free-space. Let denotes the collection of all the conducting 
patches, and V denote the dielectric substrates with permittivity 

S
ε  and permeability µ . Under 

external radio wave illumination, a surface current will be induced on the conducting surface 
and a volume electric current and magnetic current will be induced in the volume. By the 
equivalence principle, there two current radiates into free-space to form the scattered field. The 
scattered field is related to the induced equivalent surface and volume currents by 
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dyadic Green’s function,  is the wave number in free-space, I  is the unit dyad. If the incident 
electric field and magnetic field are  and , respectively, then the surface current and the 
volume current satisfy the hybrid volume and surface integral equations that are formally written 
as follows, 
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0V iω ε ε= −J E , and ( ) tot
0V iω µ µ= −M H , the above three equations actually 

contains three unknown vector functions. We use the method of moments to convert the integral 
equations into a matrix equation. The basis functions used are the roof-top basis functions (for 
both the surface mesh and the volume mesh). The matrix equations are then solved by either a 
direct solver or an iterative solver. If iterative solver is used, the matrix-vector multiplication for 
each iteration step is conducted by the aid of the multilevel fast multipole algoritm, and hence, 
large scale problems can be simulated. Once the surface electric current on the conducting and 
volume equivalent current in the dielectrics are found, the transmission and reflection 
properties of FSS can be calculated. 
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3. Numerical Example 

In this section, we present two numerical examples to demonstrate the application of the 
VSIE technique for analyzing the curved and finite-extent FSS structures. The first structure is a 



truncated dielectric backed FSS that consists of short printed dipoles on a layer of dielectric 
substrate. The substrate is curved so that the radius of curvature is 21 mm. There are 49 parallel 
dipoles arranged by 7×7 on top of the substrate, as shown in Figure 1. If the structure is expanded 
to a flat surface, then each dipole has width W=1.75mm, length L=4.15mm, and is centered on a 
substrate unit of dimension . Figure 1 also shows the top view of one unit of the 
structure. The substrate is electric dielectric with thickness 

6 mma b= =
0.037 mmd =  and relative 

permittivity 3=rε . An incident plane wave at various frequencies is assumed as the excitation. 
The incident angles are . Figure 2 and 3 shows the calculated forward and 
backward scattering cross section of the structure for V and H polarized incident waves, 
respectively. It is interesting to note that there are two frequencies that have minimum 
backscattering, one at 29 GHz, and the other at 35 GHz. This means that this curved FSS has a 
dual-frequency band filter property. 

)0,0(), 00=ii φ(θ

Figure 4 and Figure 5 shows the scattering results of the second example. This is a planar 
FSS of finite extent. The structure is the same as the curved FSS except that a 5×5 dipole array is 
used. This planar FSS structure is also presented in [3]. The incident plane wave at the incidence 
angle of is assumed and both vertical and horizontal polarized waves are 
considered. Figure 4 shows the RCS for vertically polarized incident case and Figure 5 is for the 
horizontally polarized case. As shown in the two figures, this dielectric backed FSS of finite 
extent presents good frequency selective characteristics. 
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4. Conclusion 

The hybrid volume-surface integral equation (VSIE) approach has been applied to 
investigate the curved FSS with the dielectric substrates of finite extent. The scattering RCS of a 
curved structure and a planar finite periodic structure have been presented. An important 
advantage of the VSIE algorithm is that it can be used to simulate the finite and arbitrary curved 
structure. When the finite structure size increases, the multilevel fast multipole algorithm can be 
applied to reduce the computational complexity. 
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         Figure 1. The geometry of the curved FSS structure (left) and 
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Figure 2. Calculated RCS of the curved FSS 
with elements (V-V-polarization). The 
plane wave incident direction is in . 
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ẑ−

Figure 3. Calculated RCS of the curved FSS 
with 7 7× elements (H-H-polarization). The 
plane wave incident direction is in .ẑ−
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Figure 4. RCS (V-V Pol.) of the flat FSS with 
 elements ( , ). 5 5× 030=iθ

00=iφ
Figure 5. RCS (H-H Pol.) of the flat FSS with 
5 5× elements ( , ).030=iθ

00=iφ
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