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1. INTRODUCTION 
 The problem of analyzing Frequency Selective Surfaces (FSS) has been extensively studied 

by a number of authors [1, 2], both for single and multiple screens, which are assumed to have 
identical periodicities but possibly different element configurations. However, certain designs of 
the FSS composite may involve screens with unequal periodicities, that may be either 
commensurate or non-commensurate. These systems have not been analyzed in the past, except 
for the relatively simple case of two widely separated screens with little coupling between them. 
Dissimilar FSS screens have been analyzed recently by Prakash and Mittra [3] by using an 
iterative approach valid for small-to-moderate levels of coupling. In this paper we present a 
technique for analyzing similar FSS systems that may be closely coupled. 

To analyze FSSs with unequal periods using the Method of Moments (MoM), we may follow 
one of the following two approaches. In the first approach (direct method), a global period is 
identified for the composite as a first step (assuming the periods are commensurate), and the 
multiple screen problem is then solved in its entirety using a relatively large number of unknowns. 
An alternative (cascading method) is to derive the scattering characteristics of each of the 
subsystems individually, and then cascade the scattering matrices, thus obtained, to construct the 
corresponding matrix for the composite system whose global period is also identified as in the 
previous case. The difficulty with the first approach is that the problem size often becomes large 
relatively quickly in terms of the number of unknowns, because the global unit-cell typically 
includes several unit-cells of each of the individual screens. Furthermore, if the problem is handled 
by using an iterative procedure based on the Conjugate Gradient Fast Fourier Transform (CGFFT) 
method, as is often the case for such large problems, then the global unit cells must be discretized 
by using a relatively large power of two in order ensure that the unit cells of the individual screens 
are modeled with sufficient geometrical fidelity.  

In contrast to the direct method, the cascading technique is not only more efficient, but is 
often the only viable approach for a system with a large global period. Earlier works have focused 
on commensurate systems where it is not difficult to find a common global period [2]. The only 
non-commensurate system that has been analyzed was for the case where the spacing between the 
FSS screens is large, and only the zero-th  mode needed to be included in the cascading process 
[2]. In this paper, we present a technique that extends the analysis to non-commensurate systems 
for which the spacing is not necessarily large and, hence, the higher-order Floquet harmonics 
cannot be neglected.  

2. CASCADING TECHNIQUE 

2.1 CONSTRUCTION OF THE GLOBAL SYSTEM 
The geometry of the FSS composite, comprising of N screens is shown in Fig. 1. The period 

of each individual screen is Ti, with i=1, …, N. Our first step is to identify a global period Tg for 
the composite structure so that we can analyze it with a single set of Floquet harmonics.  

If the ratios between the periods of the individual screen Tj are rational fractions, it is always 
possible to find the global period comprising of multiple (1, …, N) cells of each of the screens. If 
not, we can use an iterative strategy to find an approximate global period as explained below. We 
select an individual FSS, say the jth screen, as the dominant one, whose resonant frequency is the 
closest to the operating frequency at which we are analyzing the performance of the composite. 
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Next, we systematically determine a set of integers Lj (j=1,….,N) such that the condition (Tg=Lj · 
Tj) is satisfied to within a certain specified tolerance. We define a relative error Ek as  

 Ek = (Tg - [Tg/ Tk] · Tk )/ Tg,   (1) 

where [x] implies an integer closest to x. When the value of Ek is < 2~3%, for all possible k’s, we 
stop the process and define the parameters of the global system using the values of Li. 

2.2. COMPUTATION of SCATTERING MATRIX 
At this point, we can follow the obvious path of generating the scattering matrices of the 

composite using the global period for all the screens. However, this is not a recommended 
procedure, because it would be highly computer intensive if we wished to maintain the same level 
of accuracy as we would achieve if we were to use the individual cell sizes of the screens, as well 
as the same fineness of the cell discretizations as we would when dealing with them when they are 
isolated. 

Furthermore, attempts to compute the Reflection and Transmission Coefficients of the 
composite directly, i.e., without resorting to S-matrices, can become totally impractical if the 
global period is much larger than the individual ones. In this paper, we introduce a novel 
technique, described below, that enables us to circumvent both of the problems mentioned above.  

To compute the scattering matrix of the composite, we begin by setting the limit on the 
number of global harmonics to be included in the analysis in accordance with the rules stated in 
[2]. Next we change the value of the angle of incidence of the plane wave and compute the [S]SI 
(scattering matrix of the ith subsystem using its own Floquet harmonics, for each of the incident 
plane waves for which the matrix elements are being generated). We then fill part of the [S]GI  
(scattering matrix of the ith subsystem expressed in terms of the global harmonics) in accordance 
with the relationship between the individual and global harmonics as shown in (2). Taking kx as an 
example, they are defined by: 

 0 0
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where mi and mig are incident harmonics of individual and global system, respectively, and mk is 
the multiplier of the increment of the incident angle. 

2.3 CASCADING FORMULATION 
When implementing the cascading procedure for the screens, the speed and the memory 

requirements are two most important items to consider. This is because there are more than 8 
matrices to be generated, and a large number of matrix operations are involved in their 
computation (see [2]). We find that if we utilize the relationship between the matrices T and R 
(defined in  [2]) as shown in (3), we only need a single matrix inversion. Since this inversion 
consume a much longer time than does the matrix-matrix multiplication, we can realize a time-
saving by using the equations below to compute the S-matrix of the composite. 

  (3) (1) (2) 1 (2) (1)
22 11 11 22[ ] ,T I S S R I S TS−= − = +

3. NUMERICAL RESULTS 
To validate the technique, we consider a commensurate system as our first example (see Fig. 

2). For this example, the composite is comprised of three subsystems. The first and the third 
screens have identical periods (T1=T3=2.1 cm), while the period of the second screen T2=1.05 cm, 
which is half that of the others. We assume that the FSS elements all have cross-shaped 
geometries though these shapes can be totally arbitrary  and the spacing between the FSS 
screens is 1.0 cm.  We choose the number of global harmonic to be 6. Figs. 3 (a) and (b) show the 
magnitude and phase of the reflection coefficient (transmission coefficient data are not included 
because of space limitation) of the system. The results obtained from the direct simulation of the 
entire composite using a CG-FSS algorithm, which is very time-consuming, are also plotted in the 
above figures for comparison purposes. Figs. 4 (a) and (b) show the magnitudes of the reflection 

 



and transmission coefficients for the TE-TE polarization and oblique incidence. We note that the 
results agree very well to those obtained via the direct simulation.  

For the second example, we consider the problem of a non-commensurate system. For this 3-
screen stacked composite, T1=2.1 cm, T2=1.6 cm and T3=0.91 cm. The FSS elements of the three 
screens are again assumed to be cross-shaped, but their sizes are different—with the size of the 
cross chosen to be proportional to the cell size for each subsystem. The spacing between the FSS 
screens is 0.75 cm. We identify a global period of Tg=6.3 cm and the period multipliers to be L1=3, 
L2=4 and L3=7.  We generate the results by setting the number of global harmonic at 10, and 
present the frequency characteristics in Fig. 5. The magnitude of the reflection coefficient of the 
composite structure and those of each individual screens are plotted in this figure for comparison, 
for two cases: (a) spacing of 0.75 cm; and (b) 0.4 cm.  

It is worthwhile mentioning that for the above example, the CPU times for the direct vs. 
cascade simulations are 99 mins. vs. 4.8 mins, respectively, on a Pentium IV PC for a frequency of 
12.0 GHz. 

4. CONCLUSIONS 
In this paper, we have presented an efficient cascading procedure for analyzing an FSS 

composite system, comprising of multiple FSS screens of unequal periodicities, embedded in 
multiple dielectric layers. The numerical examples demonstrate the efficiency and effectiveness of 
the technique. Based on this procedure, a computer program has been developed for the analysis 
of dissimilar FSS systems, which can be used for both frequency and angular sweep computations. 
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Fig. 1(a)      Fig. 1(b) 
(a). The composite structure consists of N stacked subsystems (side view).  
(b). The composite structure in global system (side view).  

Subsystem N: Tg=LN · TN 

Subsystem 2: Tg=L2 · T2 

Subsystem 1: Tg=L1· T1 

Subsystem 2: T2

Subsystem N: TN

Superstrate 
FSS 
Substrate Subsystem 1: T1

d

d

Plane wave incident at (θ,φ) degree 

Second FSS screen 

Third FSS screen

First FSS screen

Figure 2.  Geometry of a commensurate system and shape of FSS element 
First FSS screen: 2.1x 2.1; Second FSS screen: 1.05x1.05; Third FSS screen: 2.1x 2.1; 
Spacing d= 1 (unit: cm). 
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Fig. 3 (a)        Fig. 3 (b) 
Reflection coefficient (TE-TE polarization) of the composite in Fig. 2 for an 
incidence angle of (1,1); (a) magnitude in dB; (b) phase in degrees 
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Fig. 4. (a)       Fig.4. (b) 
Magnitude of (a) reflection and (b) transmission coefficients of the composite 
in Fig. 2 for an incidence angle of (30, 30) and TE-TE polarization.  
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Fig. 5. (a)       Fig.5 (b) 
Magnitude of reflection coefficient of the second composite system and its comparison with those of 
the individual screens; (a) spacing d=0.75 cm; (b) spacing d=0.4 cm 
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