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1 Introduction

Modern air vehicles are usually equipped with many antennas for a variety of com-
munication, detection, tracking, and surveillance purposes. To reduce the radar
signature and the adverse effect on the aerodynamic design, the antennas are of-
ten conformal to the surface of the vehicle and sometimes embedded in a layered
dielectric medium. Placing these antennas on an air vehicle inevitably introduces
distortion in their radiation patterns and causes mutual coupling. The distortion in
the radiation patterns may reduce the desired coverage for effective communications
and compromise the accuracy for isolating and locating targets. The existence of
mutual coupling, caused by space waves, surface waves, and scattering by the plat-
form, reduces the electromagnetic isolation between the antennas and consequently
makes it difficult to operate the antennas simultaneously. Therefore, it is important
to develop accurate numerical prediction tools to characterize the radiation patterns
and mutual coupling of the antennas mounted on a complex, often large, platform.
In this paper, we present a novel hybrid technique, which is our first attempt

to deal with this complex problem. This technique is based on a recently devel-
oped finite element–boundary integral (FE–BI) method [1]. It employs higher-order
vector elements to accurately model complex geometries and reduce the number of
unknowns for large-size problems and incorporates a highly effective preconditioner
[2] to accelerate the convergence of the iteration solution of the FE–BI system and
the multilevel fast multipole algorithm (MLFMA) [3] to speed up the evaluation of
boundary integrals.

2 Formulation

Consider conformal antennas, such as microstrip patch antennas, embedded in a
dielectric medium which is situated on a complex platform (Fig. 1). The dielectric
medium is characterized by relative permittivity εr and permeability µr, which may
be functions of position for an inhomogeneous medium. To formulate a numerical
analysis for this problem, we introduce a closed surface So to tightly enclose the
entire object and leave a small distance, typically 0.05λ to 0.1λ, between So and the
surface of the object. With this, the entire computational domain is divided into
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Figure 1: Conformal antennas embedded in a dielectric medium situated on a large
platform.

two regions. The first is the narrow, free-space region between So and the surface of
the object, which is denoted by Vo. The second is the dielectric region, denoted as
Vd, whose interface with Vo is denoted by Sd. The surface of the object comprises
Sd and conducting surface Sc (Fig. 1).
We first consider the dielectric region Vd. A higher-order vector finite element

discretization [4] yields a sparse matrix equation
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where {xEVd
} and {xESd

} denote vectors storing the discrete unknowns of the electric
fields inside Vd and on Sd, respectively, {xHSd

} is a vector storing the discrete
unknowns of the magnetic field on Sd, and {bEVd

} is a known vector due to the
antenna excitation. Applying a similar discretization to the region Vo bounded by
So, Sd, and Sc yields a sparse matrix equation
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where {xHSc
} is a vector storing the discrete unknowns of the magnetic field on Sc,

{xHVo
} and {xHSo

} denote vectors storing the discrete unknowns of the magnetic
fields inside Vo and on So, respectively, and {xESo

} is a vector storing the discrete
unknowns of the electric field on So.
To form a complete system, a set of equations must be generated for {xESo

} or
{xHSo

}, which incorporates the information about the field exterior to So. This set
of equations can be generated from the combined field integral equation (CFIE),



yielding a matrix equation
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where B(ESo
,HSc

), B(ESo
,ESd

), and B(ESo
,HSd

) are full matrices, and A(ESo
,ESo

) and
A(ESo

,HSo
) are sparse matrices.

Since matrices A’s are sparse and matrices B’s are full, the complete matrix
formed by (1), (2), and (3) is a partly full and partly sparse matrix. Because of the
large number of unknowns involved for large-scale problems, the complete system
has to be solved using an iterative solver such as the generalized minimum residual
(GMRES) algorithm. It has been found, however, that the iterative process con-
verges very slowly, especially when higher-order vector finite elements are employed
[2]. To speed up the convergence, we must employ a highly effective preconditioner.
Our recent study [2] showed that such a preconditioner can be constructed by re-
placing the CFIE with the first-order absorbing boundary condition.
Finally, to solve complete matrix formed by (1), (2), and (3) iteratively, one

has to compute the matrix-vector product for each iteration. The most time-
consuming part of this computation is to compute the submatrix-vector products
B(ESo
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)xHSc

, B(ESo
,ESd

)xESd
, andB(ESo

,HSd
)xHSd

, since the rest involves only the

sparse matrices. This computation is carried out using the MLFMA [3], which re-
duces the memory requirements and computation time from O(N 2

s ) to O(Ns logNs),
assuming that the number of unknowns on So is Ns and the number of unknowns
on Sc + Sd is similar.

3 Numerical Example

To demonstrate the capability of the numerical method described above, we consider
a microstrip patch antenna housed in a cavity that resides on a platform consisting
of a conducting circular cylinder and a conducting plate (Fig. 2). The microstrip
patch antenna is designed to operate at 3.3 GHz and its long edge is aligned with
the cylinder’s axis. The normalized radiation pattern in the H-plane is shown in
Fig. 3 for two cases. In one case, the patch antenna is placed α = 28◦ from the
wing and in the other case, it is placed α = 45◦ from the wing. Also shown are
the measured data [5], and it is seen that the numerical results agree well with the
measurement for both co- and cross-polarizations.
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Figure 2: Patch antenna mounted on a cylinder with a wing.
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Figure 3: H-plane radiation patterns. (a) α = 28◦. (b) α = 45◦.

[2] J. Liu and J. M. Jin, “A highly effective preconditioner for solving the finite
element–boundary integral matrix equation of 3-D scattering,” IEEE Trans.

Antennas Propagat., vol. 50, pp. 1212–1221, Sept. 2002.

[3] J. M. Song, C. C. Lu, andW. C. Chew, “MLFMA for electromagnetic scattering
by large complex objects,” IEEE Trans. Antennas Propagat., vol. 45, pp. 1488–
1493, Oct. 1997.

[4] J. M. Jin, The Finite Element Method in Electromagnetics (2nd edition). New
York: Wiley, 2002.

[5] T. Ozdemir, N. W. Nurnberger, J. L. Volakis, R. Kipp, and J. A. Berrie, “A
hybridization of finite-element and high-frequency methods for pattern predic-
tion for antennas on aircraft structures,” IEEE Antennas Propagat. Mag., vol.
38, pp. 28–38, June 1996.




